Logistic Regression

A special case of softmax regression with K=2: (due to the overparameterization property)

hθ(x)=1exp(θ(1)x)+exp(θ(2)x(i))[exp(θ(1)x)exp(θ(2)x)]=1exp((θ(1)θ(2))x(i))+exp(0⃗ x)[exp((θ(1)θ(2))x)exp(0⃗ x)]=11+exp((θ(1)θ(2))x(i))exp((θ(1)θ(2))x)1+exp((θ(1)θ(2))x(i))=11+exp((θ(1)θ(2))x(i))111+exp((θ(1)θ(2))x(i))

Finally:
P(y=1|x)P(y=0|x)=hθ(x)=11+exp(θx)=1P(y=1|x)=1hθ(x).

Sigmoid function... (left to be expanded)
f(z)=11+exp(z).

Reference

http://ufldl.stanford.edu/tutorial/supervised/LogisticRegression/
http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/